PSNR(Peak Signalto Noise Ratio):峰值信噪比
峰值信噪比(PSNR),一种评价图像的客观标准。它具有局限性,PSNR是“PeakSignaltoNoiseRatio”的缩写。peak的中文意思是顶点。而radio的意思是比率或比列的。整个意思就是到达噪音比率的顶点信号,psnr是一般是用于最大值信号和背景噪音之间的一个工程项目。通常在经过影像压缩之后,输出的影像通常都会有某种程度与原始影像不一样。为了衡量经过处理后的影像品质,我们通常会参考PSNR值来认定某个处理程序够不够令人满意。它是原图像与处理图像之间均方误差相对于(2^n-1)^2的对数值(信号最大值的平方,n是每个采样值的比特数),它的单位是dB。公式如下:
PSNR=10*log10((2^n-1)^2/MSE)
其中,MSE是原图像与处理图像之间均方误差。公式中的符号采用了MATLAB的用法。
Peak就是指8bits表示法的最大值255。MSE指Mean Square Error,I(角标n)指原始影像第n个pixel值,P(角标n)指经处理后的影像第n个pixel值。PSNR的单位为dB。所以PSNR值越大,就代表失真越少。
PSNR是最普遍,最广泛使用的评鉴画质的客观量测法,不过许多实验结果都显示,PSNR的分数无法和人眼看到的视觉品质完全一致,有可能PSNR较高者看起来反而比PSNR较低者差。这是因为人眼的视觉对于误差的敏感度并不是绝对的,其感知结果会受到许多因素的影响而产生变化(例如:人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响)。峰值信噪比(经常缩写为PSNR)是一个表示信号最大可能功率和影响它的表示精度的破坏性噪声功率的比值的工程术语。由于许多信号都有非常宽的动态范围,峰值信噪比常用对数分贝单位来表示。
峰值信噪比经常用作图像压缩等领域中信号重建质量的测量方法,它常简单地通过均方差(MSE)进行定义。两个m×n单色图像I和K,如果一个为另外一个的噪声近似,那么它们的的均方差定义为:
其中,MAXI是表示图像点颜色的最大数值,如果每个采样点用 8 位表示,那么就是 255。更为通用的表示是,如果每个采样点用 B 位线性脉冲编码调制表示,那么MAXI就是2B − 1。
对于每点有RGB三个值的彩色图像来说峰值信噪比的定义类似,只是均方差是所有方差之和除以图像尺寸再除以 3。
图像压缩中典型的峰值信噪比值在 30 到 40dB 之间。
PSNR优缺点
PSNR是最普遍,最广泛使用的评鉴画质的客观量测法,不过许多实验结果都显示,PSNR的分数无法和人眼看到的视觉品质完全一致,有可能PSNR较高者看起来反而比PSNR较低者差。这是因为人眼的视觉对于误差的敏感度并不是绝对的,其感知结果会受到许多因素的影响而产生变化(例如:人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响)。
PSNR的一种Matlab实现编辑
PSNR的Matlab实现
function PSNR = psnr(f1, f2)
%计算两幅图像的峰值信噪比
k = 8;
%k为图像是表示地个像素点所用的二进制位数,即位深。
fmax = 2.^k – 1;
a = fmax.^2;
e = im2uint8(f1) – im2uint8(f2);
[m, n] = size(e);
b = mean(sum(sum(e.^2)));
PSNR = 10*log10(m*n*a/b);
Was this helpful?
1 / 0